What is the SNEP?

- An IP-based real-time emulator of satellite networks
- A flexible and accurate emulation environment supporting bi-directional satellite communications with multiple terminals
- A testing tool compliant with several standards and architectures, with customizable WEB interface and which can be integrated with other testbeds and real networks

Why to use the SNEP?

- DVB-RCS system analysis
- Performance analysis of new protocols
- Validation of real applications and services (e.g., data transfer, multicast, VoIP, etc.)
- Support to security analysis, pre-deployment analysis, training and testing

The Hardware

- Linux based
- COTS devices
- Small sized rack

Visit us at:

http://www.tlcsat.uniroma2.it

The IP-based real time Emulator of Satellite Networks

Rome, Italy

SNEP

SATELLITE NETWORK EMULATION PLATFORM

PLATFORM DETAILS

Hardware

- 1 Server for NCC/HUB functions
- 1 Server for Satellite emulation
- 1 Quad-processor server for Satellite terminals emulation
- 1 Quad-processor server for virtual User Terminal
- 1 Server for IP services
- 1 Redundant server (High availability)
- 1 Access point for Wi-FI connectivity
- 1 Sever VoIP
- 2 VoIP phones

Wireless extensions

Software

Debian Lenny 5.0 OS

Custom reconfig. network layout and routing (star, mesh)

Software module for DAMA (client and server side)

Software module for C₂P support

Software module for error application and delay generation

Software module for XML based parsing (input/output interface)

Centralized scheduler module

TC based (iproute2) shaping and QoS

PEP software modules in user-space

Traffic generators in C

Emergency testing

SNEP is a distributed emulation platform, with a high level of flexibility and great extendibility. It is based on open source software and each element can be replaced by or integrated with real hardware, according to needs.

SYSTEM CORE FEATURE LIST

Centralized WEB interface

XML-based configuration

wireless)

Interface with real networks (PSNT, GSM,

Wi-Fi, etc.) and external testbeds

DVB-RCS standard compliance

Skyplex standard compliance (OBP)

RCS-RCS draft compliance (Mesh topology)

DVB-S and DVB-S2 forward link Return channel via terrestrial link (wired,

Multiple terminals support, also in mesh (up to 6)

IP data Multicast support in mesh/OBP topology

IP Broadcast support in star topology

DAMA allocation schemes (CRA, RBDC and VBDC algorithms)

Protocols / Applications

Different Error model implementation
Multi frequency support

IPv4 and IPv6

C2P asynchronous messages support

ACM support

Real traffic run on demand Traffic capture, logging and statistic generation (at different layers)

Traffic shaping and **QoS support** (SatLabs)
Centralized scheduler for flexible
synchronous/async.RPC

VoIP PBX WEB configuration

MORE ABOUT OUR GROUP...

Architecture

(STs) - Virtual

User terminals

...areas of interest and...

HUB / NCC

PSTN

